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Abstract — For performance, maintainability and usability, 

military communications systems must properly integrate and 

coordinate cryptographic primitives and use adequate key 

management schemes. In this paper, we present a SHAMROCK 

(Synthesizable High Assurance Management/Reservation/ 

Operation of Cryptography and Keys) coprocessor. Being self-

contained and synthesizable, SHAMROCK empowers designers 
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management into embedded systems. SHAMROCK has been 

incorporated in multiple mission critical systems to enable secure 
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I. INTRODUCTION 

Modern cryptographic algorithms are designed with 
Kerckhoffs’ Principle in mind – that a system should remain 
secure even when the attacker knows everything from 
algorithms to code structure, as long as the secret key is 
protected [1]. The security of such a system hinges upon the 
effectiveness of key management, which is the process and 
apparatus for creating, disseminating, using, and revoking 
cryptographic keys.  

Unlike standard cryptographic operations (e.g., encryption), 
key management needs to be customized according to the 
nature of an application [2]. Any hardware/software 
vulnerabilities in key management will result in the 
compromise of communication security.  

This paper describes the architecture and implementation 
details of SHAMROCK, which is a synthesizable coprocessor 
for cryptography and key management developed to simplify 
the creation of robust secure systems.  SHAMROCK is a 
hardware implementation of the Lincoln Laboratory Open 
Cryptographic and Key Management Architecture (LOCKMA) 
software library package, which enables rapid dynamic 
rekeying of communicating devices in real-time.  

LOCKMA supports good cryptography and key 
management practices. However, in general a software only 
solution is insufficient to guarantee the security of the keys as 
system software (e.g., the operating system) could have 
unrestricted access to the memory used for processing keys. 
Special hardware extensions are necessary to achieve high 
assurance that keys are kept secret. SHAMROCK addresses 

high assurance by physically separating critical information 
from its host application. 

The paper is structured as follows: Section 2 briefly 
reviews Public Key Infrastructure (PKI) based key 
management technology. Section 3 describes LOCKMA’s 
dynamic, distributed key management in detail. Section 4 
discusses the implementation of the high assurance 
SHAMROCK coprocessor. 

II. KEY MANAGEMENT BACKGROUND

Distributed, dynamic systems are connected via complex, 
real-time communication networks. The essential requirement 
of such systems is their resiliency to unintentional (e.g., bugs) 
and maliciously induced (e.g., attacks) faults. Successful 
operation is enabled by allowing individual devices to 
communicate with each other over encrypted channels and 
dynamically including and excluding devices from a 
communicating group as they become trusted, or untrusted.  

An example of using rekeying to dynamically adjust group 
membership for three devices, A, B, and C, is illustrated in Fig. 
1. These devices communicate to each other via encrypted
channels. In Fig. 1a, the three devices are able to communicate 
using the same key. If device C is no longer used (or trusted) 
for the application, the system is reconfigured by excluding 
device C from the communicating group. This process is 
described in Fig. 1b, where device A initiates a rekey operation 
by sending out a keywrap that can be unwrapped only by 
device B. As shown in Fig. 1c, the encrypted communication 
now switches to the new key contained in the keywrap, thus 
excluding device C from the communicating group. 

The critical technology that enables such rekeying is PKI 
[3]. In the commonly used key agreement function, such as 
Elliptic Curve Diffie-Hellman (ECDH), each communicating 
device holds a secret private key and an associated public key. 
Communicating devices can exchange their public keys over 
unprotected channel and use ECDH to derive a shared secret. 
The shared secret is then used to establish symmetric keys for 
the encrypted communication channels.  

A digital signature is an important function in PKI. Digital 
signature algorithms, such as the Elliptic Curve Digital 
Signature Algorithm (ECDSA), work by computing a 
cryptographic hash of a message using, for example, the Secure 
Hash Algorithm (SHA). The message is then signed by 
deriving a value based on a private key, the message hash, and 
other meta-data. The receiver of a message can verify its 
source by running ECDSA using the message hash and the 
matching public key.  
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Fig. 1. Group management enabled by dynamic rekeying. 

Another critical aspect of PKI is the Certificate Authority 
(CA), which is an entity that issues digital certificates to certify 
the ownership of a public key by the named subject of the 
certificate. Using the CA’s public certificate, one can verify 
that an issued certificate was signed with the CA’s private key. 
If the device trusts the CA and verifies that it has received a 
CA signed certificate, then the device can trust the certificate.  

III. LOCKMA LIBRARY 

LOCKMA is a highly portable, modular, open software 
library of key management and cryptography algorithms, 
which provides user, identity, and key management functions, 
as well as support for hardware and software Suite B 
cryptographic primitives [4]. LOCKMA has an intuitive front-
end Application Programming Interface (API) so developers 
can easily create security functions.  

Fig. 2 shows LOCKMA’s interfaces as high-level security 
functions and low-level cryptographic primitives. Complicated 
cryptographic algorithms are captured as core modules. The 
back-end API supports the use of low-level cryptographic 
kernels implemented in either hardware or software.  

LOCKMA uses PKI, along with cryptographic functions 
such as Advanced Encryption Standard (AES) [5] to produce 
keywraps to orchestrate key exchanges between groups of 
devices. These key exchanges are facilitated by the generation 
of multi-recipient keywraps that encrypt a set of symmetric 
keys into a Key Update Block (KUB). The structure of a 
keywrap generated by the LOCKMA library is shown in Fig. 3.  

Fig. 3 illustrates the keywrap’s nested structure with the 
outer layer consisting of the certificate of the keywrap sender, 
and a signed KUB. Each device that runs LOCKMA must have 
at least one public-private key pair for key agreement. The 
keywrap issuer must have an additional key pair for signing of 
the KUB. The issuer of a keywrap must include its public 
signing key in a certificate signed by an authority trusted by all 
participants in the communicating group.  

 

Fig. 2. LOCKMA provides application interface, high level 
security function, and low level cryptographic kernels. 

 

Fig. 3. LOCKMA keywrap structure. 

The signed KUB has four components: the issuer’s 
Ephemeral Public Key (EPK) used for key agreement; two 
one-time single-use Numbers-Used-Once, or nonces UKMKA 
(for key agreement) and UKMMPEK (for mission package 
encryption key) that introduce unique randomness to 
subsequent transactions; a participant record that is used by 
authorized recipients to decrypt the cryptographic keys and 
associated meta-data in the keywrap; and the mission package, 
which contains the symmetric keys to be distributed. The 
participant record is a plaintext data structure that holds a set of 
data sub-structures, one for each authorized recipient, that in 
turn contain encrypted copies of a Content Encryption Key 
(CEK) that is used to encrypt the mission package. The CEK is 
replicated once for each participant, and encrypted with a Key 
Encryption Key (KEK) derived using ECDH as follows: 

KEKi = ECDH(kpri-e, kpub-i, UKMKA), 

where kpub-i is the i
th
 recipient’s public key agreement key. Kpri-e 

is the keywrap issuer’s ephemeral private key agreement key 
generated only for the present keywrap. Ephemeral key 
agreement key is required because ECDH with two static keys 
is not approved for key agreement by NIST [6].  

The mission package contains an arbitrary number of 
symmetric keys that are to be used by the authorized recipients 
for the encryption of data. The meta-data that describes what 
the keys are used for, such as key expiration times and 
algorithm specifiers is stored separately in the Mission Package 
Metadata Storage (MPMS). This is done for two reasons: first, 
the mission package is encrypted using AES keywrap mode 
with the CEK [7], which is a special version of AES that is 
designed to safeguard only keys, and second, there are 
information assurance implications to mixing secret keys and 
metadata. While not strictly secret, key meta-data can leak 
information about the application that will use the keys. To 
further enforce separation, the key metadata is also encrypted 
but with an irreversible Key Derivation Function (KDF) using 
the CEK and the second nonce UKMMPEK. The combination of 
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the metadata and mission key set is collectively signed by the 
device issuing the keywrap.  

LOCKMA implements cryptographic functions via the 
RELIC [8] and TomCrypt [9] open source toolkits. It parses 
certificates using an X.509 certificate parser [10]. Keywrap 
messages are formatted using the Cryptographic Message 
Syntax (CMS) [11], and parsed using an ASN.1 syntax parser 
[12].  

Being a software library, LOCKMA can provide robust and 
flexible key management functionality, but it cannot guarantee 
that generated secret keys are not leaked. This is because 
LOCKMA’s ability to enforce security policies – is limited by 
the degree of assurance of the application it is linked into. In 
the next section a high-assurance version of LOCKMA 
implemented in hardware, whose goal is to allow software to 
use keys but never possess keys, is described. 

IV. SHAMROCK COPROCESSOR 

The overarching goal of the SHAMROCK processor is to 
provide the static cryptographic operations necessary to create 
secure cryptographic channels between communicating devices 
without hampering the system designer’s ability to conform to 
arbitrary communication protocols and system architectures.  

High-assurance is an important goal of many military 
systems. Generally, when we use the term assurance, we are 
speaking of assurance that established security policies (such 
as the protection of secret key material) are being obeyed by 
the system under a variety of operating conditions. In the case 
of cryptographic processing, these policies are relatively 
straightforward: 

1. The value of secret keys used to encrypt data or other 

keys must never leak out. 

2. The value of critical secret data must never leak out. 

Here, we differentiate between data and keys, as a leak of 
key material can greatly amplify data loss. Keys are used in a 
limited context – for example, as an input to a streaming 
encryption/decryption function – and are easier to protect than 
user data, which is used (in unencrypted form) in a potentially 
unlimited set of contexts. Further, those contexts frequently 
have usability constraints placed on them that limit applicable 
data security techniques. Therefore, any assurance arguments 
made for LOCKMA, or its hardware implementation described 
below can only make claims on policy 1. However, the ease of 
deployment of LOCKMA or SHAMROCK in secure systems 
has lessened the burden on a system designer in meeting policy 
2 as effective key management is easier to achieve and use in 
order to adequately protect data, as the effective key 
management is essential to effective data protection. 

The primary goal of the SHAMROCK processor is to 
encapsulate the LOCKMA key management system in a high-
assurance “shell” that is as agnostic to protocol as possible. 
This way the nuances of application specific encoding methods 
such as CMS, X.509 certificate parsing, and Ethernet can be 
separated from the core functionality of generating and 
distributing keys and providing cryptographic services. This 
separation is very much akin to the goals of the LOCKMA 

software library, but in a physical form and with a focus on 
high-assurance and separation of critical cryptographic 
functionality from application functionality. The primary 
methods for achieving high-assurance are: 

 Rigid and architecturally enforced separation of data and 

key material into concentric security zones. 

 Minimized and rigidly defined external interfaces. 

 Physically verifiable inter-zone interfaces. 

Using these techniques which will be described in 
following sections, SHAMROCK achieves an important goal: 
Complex systems that implement functionality in software can 
use cryptographic functions whose security relies on secret key 
material without ever actually possessing that key material. 

A. Threat Model 

SHAMROCK is a synthesizable coprocessor that is written 
in a Hardware Description Language (HDL) and can therefore 
be implemented in an Application-Specific Integrated Circuit 
(ASIC) or a Field Programmable Gate Array (FPGA). Salient 
assumptions of the operating environment are: 

 Malicious actors may obtain physical control of some 

SHAMROCK-enabled devices, and will be able to query 

and attempt to utilize SHAMROCK for cryptographic 

operations. 

 SHAMROCK and a separate non-volatile memory 

(NVRAM) used for long-term storage of credentials are 

inside of a physical protected volume. The FPGA device 

for prototyping does not have on-chip NVRAM, so the 

architecture includes an NVRAM Interface. 

 Mitigation against side-channel attacks, such as 

Differential Power Analysis (DPA) [13], will be provided 

separately from the SHAMROCK core. The SHAMROCK 

architecture does not preclude the inclusion of side-

channel-resistant crypto-cores, but the system described in 

this paper does not directly address this type of attack. 

 The core is implemented correctly, and without any added 

nefarious logic. 

B. High Level Architecture 

Fig. 4 shows the high level architecture boundary of 
SHAMROCK. SHAMROCK has three major functions: key 
protection and manipulation, streaming symmetric 
encryption/decryption, and key management protocol. All three 
of these functions are architecturally separated from one 
another, and communicate via simple interfaces that are 
designed to minimize attack surface. The SHAMROCK 
prototype currently implements an AES-CTR (counter) mode 
encryptor/decryptor [14]. However, this encryptor/decryptor 
can be replaced with any user-supplied symmetric cipher 
block. 

The key management functionality is divided up into an 
untrusted protocol control module, which hereafter is referred 
to as the black module, and a monolithic high-assurance key 
management (HAKM) module that implements key derivation, 
key agreement, and key protection, which is called the red 
module.  
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Fig. 4. SHAMROCK high level architecture. 

The black module is implemented with a small “soft” 
microprocessor (e.g., the Xilinx MicroBlaze) that is 
responsible for external communication as well as parsing and 
generation of cryptographic messages. The microprocessor is 
the master on an AMBA High-performance Bus (AHB) [15] 
and drives a number of connected devices including I/O 
transceivers, RAM, ROM and the HAKM red module.  

The black module microprocessor boots from a special 
trusted persistent ROM (bootloader) and uses the HAKM red 
module to verify its run-time code image, which is digitally 
signed by a trusted third party. External interfaces generally 
obey a simple First-In-First-Out (FIFO) protocol for maximum 
flexibility. Those interfaces are described below: 

Password (red): SHAMROCK’s root of trust and root 
credentials are persistent across power cycles. These data are 
“unlocked” by supplying a password to a special red port at 
power-on time. 

Command (black): A command-line based interface to 
SHAMROCK’s key management subsystem. 

Keywrap IO (black): An external-facing port used to receive 
and transmit keywraps into the Over-The-Air-Keying (OTAK) 
interface. 

Plaintext streaming port (red): The red interface to the 
streaming symmetric encryptor/decryptor. 

Ciphertext streaming port (black): The black interface to the 
streaming symmetric encryptor/decryptor. 

With the exception of the password port, none of these 
interfaces directly connects to the HAKM red module. Rather, 
the protocol control black module handles all input and output, 
and only passes vetted data (primarily keywraps) through. 
Except for the key RAM output, which provides received keys 
for the streaming encryptor/decryptor, the HAKM red module 
does not have connections through which keys can be 
divulged.  

Similarly, the HAKM red module has a minimal interface 
to the rest of the SHAMROCK system. Its ports are described 
below: 

KM control (black): A command/status interface used to pass 

data and commands to the HAKM red module. 

Password (red) – An input-only port used to receive passwords 

from outside the device. 

Key RAM (red) – An output port that serves received keys out 

to the streaming encryptor/decryptor. 

Given the assumption that the protocol control black 
module is untrusted, the HAKM red module thus implements a 
concentric security architecture that utilizes cryptographic 
functions to control information flow and enable security 
guarantees.  

C. High Assurance Key Management Architecture 

The design goal is to ensure that a compromised protocol 
control module cannot extract root secrets, or secrets generated 
in another SHAMROCK device from the local HAKM red 
module. The HAKM red module design therefore assumes that 
it is being used/controlled by a competent external entity, but it 
does not trust that entity to manage or control secret key 
material.  

The HAKM red module security is strongest when it is 
communicating keywraps to/from other HAKM modules (as 
opposed to LOCKMA software instances, which can also 
generate and unwrap keywraps). This is due to a founding 
principle of the HAKM module architecture; secret material is 
generated deep inside of the HAKM module and can only be 
exported by modifying (e.g., encrypting or hashing) it using 
other data/key material generated inside of an HAKM module. 
Thus, keys generated inside of the HAKM module can only 
exist in plaintext form when they are inside of a trusted HAKM 
module, with the exception of keys that are supplied to the 
encryptor/decryptor. This is underpinned by the “logical 
unknowability” of data in key generation regions of the 
HAKM module. 

This design principle is illustrated in Fig. 5, in which two 
SHAMROCK devices are communicating over a wireless 
channel. The concentric rectangles represent the security zones 
in the HAKM module, with the inner area (Zone 0) containing 
root secrets generated inside of the HAKM module, and the 
next region (Zone 1) denoting ephemeral secrets such as 
dynamic keys. AES encryption is employed as a one-way 
function leading from the ephemeral Zone 1 to the outermost 
Zone 2, which could be considered outside of the high-
assurance boundary. While the root secret (represented as the 
inner-most key in Zone 0, Fig. 5) is used to transform the 
ephemeral secret (represented as the key in Zone 1, Fig. 5) 
using AES, the root secret itself never leaves the confines of 
Zone 0. As the inputs to the AES unit can only come from 
Zones 0 and 1, then the secret is protected by encryption 
outside of the HAKM module (i.e., Zone 2 and beyond).  

This high assurance architecture is made possible by 
several combined technologies and techniques, including in-
situ key generation, and physically directed cryptographic 
functions. Directed cryptographic functions are functions such 
as AES or ECDH with their physical implementation laid out 
so that they can only be used to transfer and transform data 
from one physical location to another. Their layout in the 
system is therefore tightly linked to the aggregate functions in 
which they will be used.  

As an example, in the key management scheme laid out in 
Section III, an intermediate step in the keywrap generation is to 
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encrypt a set of keys with AES keywrap mode using a CEK. 
The plaintext keys to be encrypted reside in an ephemeral but 
secret Zone 1 memory, and will be encrypted and sent out to a 
Zone 2 black memory using a key that also resides in the Zone 
1 memory. This operation could be carried out by a general-
purpose AES engine that has read and write access to either 
memory, but such an arrangement would be vulnerable to 
misuse of the AES unit, either by copying plaintext keys across 
memories or encrypting with keys known to the adversary. In 
contrast, dedicated physically directed AES units are used, 
which can only output to a designated location, and take inputs 
(keys and data) from another separate designated location. 

 

Fig. 5. HAKM module concentric secure zones. 

Similarly, since the keywrap process requires unwrapping, 
there must be a reciprocal AES function that decrypts keys into 
the Zone 1 memory. Decryption from the black Zone 2 
memory into the red Zone 1 memory can only be done using a 
key that already resides in the red Zone 1 memory. Since the 
contents of the key package are secret, decrypting ciphertext 
from the black Zone 2 memory into the red Zone 1 memory 
using a key in the red Zone 1 memory will result in secret data 
in the red Zone 1 memory, which is unknowable to the outside 
of Zone 1. This complies with the security tenet that all 
information originated from another HAKM module residing 
in the red Zone 1 memory will be secret and unknowable. 

In the SHAMROCK design, the AES units used for high 
assurance purposes are all physically separate units, whose 
inputs are rigorously and physically verified and controlled 
during the design process. Fig. 6 shows the internal layout of 
the SHAMROCK HAKM module. From the outside, the 
module appears to have a contiguous memory space. In reality 
the HAKM module memory is broken up into the three zones 
illustrated in Fig. 5, with the memory in the outer 
SHAMROCK protocol control region considered a fourth. 
These zones are defined as follows: 

Zone 0: Root keys and other long-term credentials. This region 

is rigorously controlled. Its contents are used for a limited set 

of operations, such as signing and key agreement.  

Zone 1: Ephemeral secret information. Ephemeral keys for key 

agreement, as well as keys sent and received in keywraps. 

Content Encryption and Key Encryption Keys are generated 

and temporarily stored here. 

Zone 2: Black staging. A non-secret memory that is used to 

stage and marshal data during long atomic operations such as 

provisioning or keywrap generation. 

Zone 3: Black protocol. This memory is outside of the HAKM 

module, which is not uniform and contiguously addressed with 

respect to the HAKM memory. 

 

Fig. 6. SHAMROCK HAKM internal structure. 

The interface to the HAKM module is via input and output 
FIFO memories and a special command mailbox register, each 
of which is individually addressable on the external AHB bus 
by the protocol control module. Input data can be written into 
the FIFOs, then a write command executed via the mailbox. On 
command execution, the HAKM takes control and copies that 
data into the specified location in Zone 2 memory. Attempting 
to copy data into any other zone by specifying an address that 
is mapped outside of the Zone 2 memory will result in an error 
because there is no direct path available. 

D. SHAMROCK Operations 

The following description is given at high level with 
respect to the current FPGA prototype of SHAMROCK, but is 
sufficient for understanding its operations in general. An 
example of the constraints placed by the selected FPGA is its 
lack of on-chip non-volatile memory, thus requiring the use of 
an external NVRAM.  

In normal operation, the device is controlled by the 
software running on the protocol control module in Zone 3, 
which also handles all external interaction. Booting the 
protocol control module is thus the first step in SHAMROCK 
operation. SHAMROCK has an internal bootloader embedded 
into the FPGA bitstream, which is protected with the FPGA’s 
built-in security features. The device relies on an external 
NVRAM to store an encrypted boot image. The role of the 
bootloader is to read a software image from the NVRAM, 
verify its signature for authentication, decrypt, and then start 
the execution. If the verification fails, the device halts.  

When SHAMROCK is first powered on, it has no secret 
credentials and therefore no key management capability. It 
must be provisioned with at least one private and public key 
pair for key agreement purpose. In the case of a keywrap 
issuer, the device must also be provisioned with a pair of 
signing private and public keys. The secret portion of these key 
pairs is generated using the ring oscillator based true random 
number generator (TRNG) to seed a pseudo-random number 
generator (PRNG) (see Fig. 6). The storage of these long term 
key pairs is encrypted with a key generated by a user password. 
In addition, the entire provisioning function is designed to be 
atomic, which means that a single command triggers private 
key generation, password entry, and encrypted storage. These 
important keys are stored in Zone 0, the long-term secret store, 
which can only be written when the device is powered on. The 
use of these keys is then physically restricted to only certain 
Zone 1 functions. 

After the SHAMROCK device is fully provisioned, it must 
be unlocked before use. This atomic operation involves 
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receiving a password entered through the password port and 
decrypting the long term credentials. The public key(s) and a 
couple of nonces (UKMKA and UKMMPEK) generated with the 
PRNG are placed in Zone 3. The device is now ready to 
process or, if it has a signing key, generate keywraps.   

The first step in keywrap construction is the generation of 
one or more symmetric mission keys for encrypted 
communications between SHAMROCK-embedded systems. 
The key generation request is initiated by the protocol control 
module to the HAKM module, which creates and places them 
in Zone 1 memory. Note that the protocol control module 
knows of the existence of these keys, but has no ability to 
understand them. The protocol control module then generates 
metadata associated with each key, such as its creation time, 
expiration time, etc., and places them in Zone 2.  

The protocol control module then requests the HAKM 
module to generate a CEK and encrypt the mission key 
package with a gate keeper AES encryptor going from Zone 1 
to Zone 2. For the reason explained earlier in Section III, a 
derivation of the CEK is used to encrypt the metadata already 
in Zone 2. 

Next the combined metadata and mission key package is 
signed and ready for insertion in the final keywrap structure. 
Next, participant records, one for each member of the 
communicating group, are created. The protocol control 
module directs the HAKM module to produce in Zone 1 a 
KEK for each intended participant using the participant’s 
public key agreement key. The CEK is encrypted multiple 
times, one for each participant with its respective KEK. 
Associated participant identification tags (UIDs) are added to 
complete the participant record. The keywrap is completed by 
adding the sender’s certificate, EPK, and the nonces. The now 
fully formed keywrap is signed before it is sent out. 

 When a keywrap is received, the recipient unwraps it to 
extract the current mission key set. This process is essentially 
the reverse of the above keywrap generation process. The only 
exception is that only the participant record associated with the 
recipient is decrypted with its KEK to retrieve the CEK.  

E. Prototype Implementation and Evaluation 

The SHAMROCK coprocessor has been prototyped on a 
Xilinx Kintex 7 FPGA-based testbed (Fig. 7). We have 
measured the performance of two main key management 
operations in the SHAMROCK prototype (with a 50 MHz 
clock). In a rekeying operation, the timing of generating and 
receiving keywraps on the FPGA are 337 ms and 130 ms, 
respectively. In a typical usage scenario, we assume that the 
streaming AES is used 100% of the time while the key 
management functionality is used 5% of the operational time. 
The average dynamic power for this scenario is ~53 mW. In 
particular, the key wrapping and key unwrapping operations 
consume ~23 mw and ~ 141 mw, respectively. 

V. SUMMARY AND ONGOING WORK 

In this paper we have described a self-sufficient 
synthesizable high assurance cryptography and key 
management coprocessor. Comparing to its software 

counterpart, the hardware processor provides additional 
security and performance through a high assurance architecture 
and design. Ongoing work includes the development of a 
reference secure embedded system architecture for bringing 
dynamic rekeying to the secure computing and 
communications of distributed embedded systems [16].  

 

Fig. 7. SHAMROCK testbed. 
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